نتایجی درباره عدد غالبی رنگین کمان

thesis
abstract

در این پایان نامه ابتدا عدد غالبی معرفی شده سپس به معرفی عدد غالبی تام ،جفت شده وعدد غالبی رنگین کمان پرداخته ایم،سپس به معرفی حاصلضرب دکارتی و قاموسی به ارتباط بین عدد غالبی رنگین کمان با عدد غالب جفت شده و تام پرداخته ایم. همچنین در این رساله با معرفی چند نوع گراف خاص از قبیل گراف هراری و گراف خورشید وشبکه ها که خود حاصلضرب مسیرها هستند،مطالبی دربارهعدد غالبی 2-رنگین کمان آنها ارائه دادهایم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

درباره عدد غالبی علامتدار گراف ها

د ر این پایان نامه ابتدامفهوم عدد غالبی علامتدار در گرافها تعریف شده است.سپس کرانهایی برای عدد غالبی علامتدار در گرافهای منتظم برحسب درجه رئوس ارائه شده است.بویژه در گرافهای سه منتظم یا گرافهای مکعبی کرانهای دقیق تری ارائه شده است. سپس مفهوم عدد غالبی علامتدار فراگیر تعریف شده است، که علاوه بر گراف برای مکمل آن نیز غالبی علامتدار است.همچنین گرافهایی با این خاصیت که عدد غالبی انها با عدد غالبی ع...

15 صفحه اول

نتایجی درباره گروه های کامل

فرض کنید یک G گروه کامل باشد. در این مقاله با روش جدیدی ثابت می کنیم که هر خودریختی از گروه G را می توان به طور یکتا به یک خودریختی از گروه پوششی G گسترش داد. همچنین ثابت می کنیم اگر G یک فاکتور مرکزی از گروهی مثل H باشد آنگاه هر خودریختی از گروه G به طور یکتا به یک همریختی از گروه پوششی G به H گسترش پیدا می کند.

full text

نتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها

تابع  یک تابع احاطه گر 2-رنگین کمانی  برای گراف  نامیده می­شود هرگاه برای هر راس  با شرط  داشته باشیم . وزن یک 2rdf  برابر است با . عدد احاطه گر 2-رنگین کمانی گراف  را که با نماد  نمایش می­دهیم کمترین وزن یک 2rdf در گراف  است. تابع احاطه­گر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف  یک تابع احاطه­گر 2-رنگین کمانی  می­باشد به­طوری که مجموعه­ی  یک مجموعه­ی احاطه­گر برای گراف  نباشد. وزن یک m2rdf  ...

full text

ریاضی رنگین کمان

در این مقاله، اینکه «چرا رنگین کمان را فقط بین زوایای 40 تا42 درجه در یک قطره کروی آب می‌توان دید»، مورد بررسی قرار گرفته است. وقتی یک شعاع  نور خورشید ازهوا وارد قطره آب می‌شود، مقداری از نور روی قطره بازتاب می‌کند، مقداری بعد از ورود به قطره ازپشت آن خارج می<...

full text

بررسی عدد k- احاطه گر رنگین کمان بر روی گراف تعمیم یافته ی پترسن

احاط هگر ها، یکی از مباحثمهم در نظریه ی گراف ها، محسوب می شود. احاطه گر در نظریه ی گراف دارای کاربرد های فراوانی نظیر مسائل جانمایی در دنیای واقعی است. یکی از انواع احاط هگر ها، احاطه گر رنگین کمان است. f : v (g)

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023